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The moderate and large-scale motions of the atmosphere are grea t ly  

influenced by the vo r t i c i ty  of t he  ea r th ' s  rotat ion.  In  the case of an 

i n f i n i t e  l iquid,  rotat ing as  a r ig id  body about an axis, the amount of 

energy possessed by the l iqu id  is in f in i t e  and it i s  of great i n t e r e s t  

t o  know haw s m a l l  disturbances propagate i n  such a l iqu id .  To understand 

some of these phenomena, it w i l l  be in te res t ing  t o  s tudy  the flow of a 

ro ta t ing  f l u i d  around elementary bodies. 

Here we consider small osci l la t ions of a sphere i n  an incompressible, 

viscous f l u i d  rotat ing with a constant angular veloci ty .  Fhr flow i n  the  

absence of rotat ion,  the problem was first considered by Stokes [Lamb, 19321 

on the  assumption t h a t  the Reynolds number Rs = alV,I/y was negli'gibly 

small (so as t o  discard convective terms), wher? Vs i s  the veloci ty  

of the sphere, a is the  radius of the sphere and Y the  kinematic viscosi ty .  

It i s  the  purpose of the present investigation t o  determine the  e f f ec t  

of the  Coriolis forces on the  flow pattern.  

Let the  sphere osc i l l a t e  along the axis of the  ro ta t ing  f l u i d  which 

is taken t o  be the x-axis. The origin i s  a t  the mean posi t ion of the center 

of the sphere. The equations of motion of an incompressible, viscous, 

unbounded l iqu id  ro ta t ing  about x-axis with a constant angular veloci ty  

Q - i referred t o  a ro ta t ing  frame of reference are 
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where p is the  dellsity, 1 the  velocity of the f lu id ,  p i s  the  pressure 

and r is  the  r ad ia l  coordinate: 

3 = f + z 2  . 

The equation of continuity i s  

div v = 0 . - 

As i n  the c l a s s i ca l  problem, t h e  convective terms i n  (1) w i l l  henceforth 

be neglected. This is ju s t i f i ed  i f  

The equations (1) and (2)  w i l l  be reduced t o  a non-dimensional form by 

r e fe r r i rg  the length t o  a, the radius of the sphere, the veloci ty  t o  a1 

(h/2n is  the frequency of the  osc i l la t ion) ,  t he  time t o  l / h  and the  

pressure t o  p a2 h2. Then we have 
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and 

div v = 0 - 

w.here 

Re (Reynolds number )* = a2h/y 

and 

6 = 2 n/Y, the  inverse of t he  so-called Rossby number 

and the  centr i fugal  force -6*Vr2 /8  has been absorbed i n  the pressure term. 

The boundary conditions on v are t h a t  v = U i at the sphere R = 1 
S- - - 

*It should be noted t h a t  we have used ah as veloci ty  i n  the def in i t ion  
of the  Reynolds number. There s t i l l  i s  another important dimensionless 
parameter a/a, where CY is  the amplitude of -the osc i l la tory  motion of the 
sphere. It is  assumed tha t  t h i s  quantity is  s m a l l  compared t o  unity.  The 

veloci ty  of sphere i s  Vz = CY h e 

U i = Q'/a e 

defined as R = a CY h / y  (=R a/a). It i s  necessary tha t  R << 1, whereas 
the r e q u i r e g n t  fo r  R 

i h t  2, or i n  dimensionless form: 
it 
- i. The Rep-olds number f o r  the  flow might have a l so  been s 

e S i s  less severe. e 



(where R2 = r2 + 2 )  and - v = 0 at  in f in i ty .  

A s  i n  non-rotating case, w e  have here mi-symmetry i n  t h a t  t he  

physical var iables  are independezt of t he  azimuthal coordinate* z.  

However, the  azimuthal component of velocity v i s  non-zero here i n  

contrast  t o  the  non-rotating case i n  which vz is zero. 

@ 

W e  next make an importan+, assumption i n  t h a t  the  Rossby number 

R i s  large so  as t o  neglect second o r  higher powers of 6 .  
0 

From (4)  and ( 5 )  it follows t h a t  v = 0(1), vr = O(1) and v* = 0(6), X 

hence 

v2 p = o(62) . 

It follows t h a t  the coupled equations (4) can be simplified i n  t h i s  case. 

In  f a c t ,  i n  view of ( 9 )  and (lo), v 

system of equations and boundary conditions as i n  non-rotating case. 

The solut ion is  therefore [Lamb, 19321 

and v 
X r s a t i s f y  ident ica l ly  t h e  same 

and 

*(r, I, x) are  the  cyl indrical  coordinates. 



P (case) - B f 2  (hR) h2 R5 V R2 

where (R, 8, Q) are the  spherical  polar coordinates*, and 

h2 = - i R e  . 

The function fn  ( g ) ,  defined as 

n - i S  
f n ( S )  = (- i 

essent ia l ly  represents boundary layer e f fec ts ,  while the constants 

A and B are given by 

A = - i h2 f2 (h )  B , B = Us/2fo(h) . 

Finally, vQ remains t o  be determined, which satisfies 

and t he  boundary conditions 

*X = R cos 8, r = R s i n  8. 
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vi = 0 at R = 1 and at in f in i ty .  

The solut ion of (15) and (16) is  

vI - - - 1 6 B R e x r f l ( h R ) + 3 6 A ~ + c x r f 2 ( h R )  
2 R 

where 

c = 3 B 6 R  e [l+q] 2f2 h . 

To summarize, t he  following conclusions are noteworthy: 

(5.)  The azimuthal component of veloci ty  is non-zero i n  contrast  

t o  non-rotating case i n  which vQ = 0. 

(ii) The rotat ing e f fec t  generates v o r t i c i t y  i n  t h a t  f o r  large 

distances, the  flow pa t te rn  is i r ro ta t iona l  i n  non-rotating case. I n  

rotat ing case, the  azimuthal component of velocity is responsible f o r  

v o r t i c i t y  f o r  large R .  

(iii) The wave-like terms fn(hR) (corresponding t o  a boundary 

layer )  appearing i n  the solution, effective i n  a small distance from 

the  surface of t he  sphere and behaving l i ke  exp [ - ( l + i ) q ( R - l ) ]  are 

essent ia l ly  similar i n  nature i n  rotating and non-rotating cases. 

( i v )  The drag on the sphere remains unchanged (due t o  ro ta t ion)  

t o  the  order 6 since vx, v and p remain unchanged t o  that  order. r 



I n  a forthcoming paper, the  above discussion w i l l  be extended t o  

a compressible f l u i d  i n  t h e  presence of a magnetic f i e l d .  
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